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ABSTRACT

The transition to turbulence in a boundary layer over a fiat plate with mild surface

undulations is simulated using the parabolized stability equations (PSE). The simulations

incorporate the receptivity, the linear growth, and the nonlinear interactions leading to

breakdown. The nonlocalized receptivity couples acoustic perturbations in the free-stream

with disturbances generated by the surface undulations to activate a resonance with the

natural eigenmodes of the boundary layer. The nonlinear simulations display the influence

of the receptivity inputs on transition. Results show the transition location to be highly

sensitive to the anaplitudes of 1)oth the acoustic disturbance and the surface waviness.
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I. Introduction

In the absenceof significant crossflow or curvature, transition to turbulence generally
results from the amplification of traveling eigenmodessuch as Tollmien-Schlichting (TS)

wavesor Squiresmodes. These traveling modesare generatedthrough the processcalled

receptivity. While surfacevibrations and atmosphericturbulence can activate receptivity
mechanisms,experimentshave shown that the laminar-turbulent transition over a wing

surfaceis strongly affectedby the acousticfield generatedby the enginesand the turbulent

boundary layer on the fuselage [1].

The interaction of the acoustic field with a single bump has been the focus of several

investigations in the past, e.g. Goldstein & Hultgren [2] and Kerschen [3]. These analyses

are "decoupled" from the downstream disturbance evolutions, and are solved independently

to provide the initial amplitudes for the evolution calculations. These and other receptivity

studies have been primarily theoretical or experimental, but there are some ongoing studies

based on numerical simulations, such as, for example, Lin, Reed & Saric's [4] simulation of

the receptivity to sound for a fiat plate with a bhmt leading edge.

A new mechanism has recently been forwarded by Crouch [5,6] based on small nonlo-

calized irregularities that cover the entire surface (e.g. undulations or roughness). Possible

origins for these undulations include the extrusion and plate rolling process at the manufac-

turing stage, and heat and pressure induced distortions during flight. Unlike the localized

case, the receptivity is mixed with the disturbance evolutions and both must be considered

simultaneously. Studies indicate that, if operative, this mechanism is likely to dominate the

receptivity process [7,8].

We employ the parabolized stability equations to simulate the boundary-layer transition

over a wavy surface; we include both the receptivity and the subsequent linear and nonlinear

evolutions. The relative efficiency of the PSE simulations accommodates the investigation of

the effects of "receptivity input parameters" on the path to transition. These investigations

display the strong effect which small, i.e. O(1), changes in the wall roughness height and

geometry have on the transition process.

II. Wall geometry and acoustic field

We consider a fiat plate immersed in an incompressible flow field with acoustic noise.

The plate surface is covered by small amplitude irregularities with length scales comparable

to TS waves.

We employ a Cartesian coordinate system with the average plate surface in the ,r*-z*

plane, x* measuring streamwise distance, and y* the distance normal to the plate (the



symbol * denotesa dimensionalquantity). We nondimensionalizequantities using the free-

* _/ • . T. * being the location wherethe.stream velocity U_ and the length 8_ = te ocT/boo , with zT

Reynolds number Rx = U_ox'_/z.'* equals one million. Results are presented in terms of the.

usual stability parameters, R = _ (distance) and F = lOS(co*/2w),.,*/(U2o) 2 (frequency).

The ;r-z-periodic function H(z, z) describes the surface undulations. We represent H by

its Fourier series representation,

k
F_--OO S_--OO

where the coefficients }/V_,_ and 14/'__,__ are complex conjugates. Additionally, we impose

symmetry in z, thus W_,_ = 14/',.,__. We use values of lwl of the order of 0.002 (see Tabh, l)

which translate into a height to wavelength ratio of order 1/1000. At STP and/77_ = 10 m/s

the peak-to-peak surface variation is in the range of 30 mierolneters, while at/F_ = 100 m/s

the variation is about 10 micrometers.

The flee-stream acoustic field is of the form

C_O

Associated with each discrete acoustic frequency Al is a velocity field having a Stokes layer

at the wall satisfying the no slip boundary condition, and matching the acoustic field in the

free-stream. The values of co in (2), and of a and fl in (1) represent the lowest common divisor

of the set of frequencies and wave numbers present. In case the wall spectrum is dominated

by sharp peaks but the acoustic spectrum is not, we choose co such that for each wall mode

(no:, l,'fl), the triplet (leo, ha, kfl) is as close to branch I of the TS wave neutral stabil:_ty curve

as possible. In this way we focus our attention on the temporal-spatial combination that

will feed the greatest amount of energy into the eigenmodes. Conversely, if a flat spatial

spectrum is present and isolated peaks exist in the acoustic spectrum, we select the values

of a and fl that yiehl triplets close to branch I.

III. Receptivity mechanism

Acoustic disturbances in the free-stream generate Stokes modes within the boundary

layer. In the incompressible limit these modes have only temporal modulation,

vl = ¢¢l(y)c it_°t q- c.c. , 1 .... ,-2,- l, 1,2, .... (3)

Meanwhile, the mean flow over a wavy surface produces steady wall modes,

v,_,k = %,k(z, y)c i'_'_+ik'_': + c.c. ,
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Y (a)

z

Figure 1: Rendition of surface undulations used in present study. The normal coordinate is

stretched. (a) Case "high" and "low", (b) Case "riblet".

.... ,-2,-1, 1,2, .... (4)

These modes are standing waves with wave numbers given directly by" the surface. Single-

handedly, neither tile acoustic nor the wall velocity fields can directly energize a travel-

ing eigenmode since these fields lack the necessary spatial or temporal variation, respec-

tively. However, the simultaneous presence of both fields produces traveling waves due to

the quadratic nonlinearity of the Navier-Stokes equations,

Vl,n,k = ¢¢l,,z,k(X, !t)e -ilwt+ikflz+inc_x, (5)

whose form is identical to that of the natural eigenmode of the boundary layer, except the

value of the exponent c, may not match that of the eigenmode of the boundary layer stability

equations, which has the form,

Vl,n,k __ Vl,n,k(X ' M] C Zo ,

a_ = % + ic_,

The receptivity mechanism is illustrated in Figure 2.

(6)



The key ingredient to the nontocalizedreceptivity processis a resonancewhich results

whenthe wall wavenumber c_ approaches the eigenmode wave number a_ = % +/eee. Here,

7 is the growth rate. Near branch I the growth rate is small, and, for an appropriate value

of ee, tile difference la_ - c_I may be small. The resulting response of the boundary layer,

under tile forcing provided by the traveling wave may be quite large. The detuning la_ - a I

Acoustic Wall

Forced Eigenmode

Figure 2: Components of the nonlocalized receptivity model (Spa nwise wavenurnber fie. not

shown).

changes as the modes are convected downstream. During the large response near branch I,

energy is transferred into the eigenmode of the boundary layer. The nonlocalized receptivity

model [5,7] shows that tile rate of energy transfer between the forced wave and the eigenmode

is proportional to the rate of variation of the forced wave response. Farther downstream,

tile eigenmode undergoes the typical exponential growth characteristic of tile linear regime.

Receptivity results from the net energy transfer into tile eigenmode. The superposition of

the forced wave and the eigenmode, with their appropriate wave numbers, provides tile total

(physical) traveling-wave disturbance.

IV. The PSE formulation

As a consequence of the basic flow being independent of the spanwise coordinate z, we

Call reduce the number of unknowns from velocity components u, v, w (along x, y, and z,

respectively) and pressure p to only u and v. We eliminate pressure by taking the curl of

the momentum equation, and w using the continuity equation. The boundary conditions are

4



zero velocity at the wall, and (except for the acoustic modes and the mean-flow distortion)

vanishing velocity far from the plate.

The parabolized stability equations, commonly abbreviated to PSE, were developed by

Herbert & Bertolotti [9] to incorporate nonlinearity and the slow growth of the boundary

layer into the boundary-layer stability computations. The results were found to agree with

those of full DNS simulations up to "spike stage", where the complexity of the flow rapidly

spreads beyond the resolution of the PSE code [10,11,12].

Herein we extend the PSE formulation to incorporate the nonlocalized receptivity model.

We express the velocity field in a series in time (index l), in x (index n) and in z (index k),

oo oo oo

= + (7)
l_--OO n_--OO /¢_--OO

where, p is the wave-vector (l, n, k). The velocity field of each mode is partitioned into

Vp(X,y,z,t)= Ap(x)Cep(X,y)Xp(X,z,Q. (s)

The function

V ]A (x) = exp (9)
o

incorporates (in a sense made specific below) the amplitude of each mode and the function

X incorporates the wavelike part of the mode's velocity field

Xp(X,Z,t)=exp [inctx + ikflz- ilwt]. (10)

This formulation differs from the regular PSE formulation [12] in that the wavenumber ce

in (10) is not a function of x, but, rather, is held constant in order to accommodate the

wall Fourier modes. As a consequence, the maximum allowable step-slze yielding acceptable

accuracy is significantly smaller than that permitted using the regular formulation. The

reason for this reduction is that differences between the modes' physical wavenumbers (based

on u_, say) and the Fourier wavenumbers nc_ must be resolved by the profile functions

_p, which are subject to the "parabolization" approximation (12). We expand on this topic

later on.

The acoustic and wall modes have a wave vector of the form, respectively,

p = (,o,0,0), (2w,0,0), ..., (Lw, O,O)

p = (0, c_,0), (0,0, fl), ..., (O, Xo, Kfl).

Both the forced traveling wave, (5), and corresponding eigenmode, (6), have the same fre-

quency and spanwise wave number, and approximately the same streamwise wave number.



Accordingly, both tile forced and tile eigenmode can be resolved t)3, tile Fourier mode having

the wave vector

p = kfl)

for some n and h. In particular, the eigenmode wave number n_(x) varies with x and, hence

will not equal the wall wavenumber na except possibly at one poitJt. The difference,

aXp = e (ll)

is resolved by the profile function Vp. Thus, the dependence of _'p on z in eq (4) is the key

factor that allows the PSE to capture the nonlocalized receptivity mechanism.

The partial differential equation governing the velocity profiles Op is obtained by substi-

tuting the expansion (3) into the Navier-Stokes equations. For the streamwise derivatives

we make use of the slow change with a: of the profiles and growth rates with the rule

where ap(:r) = "yp(:r) + i_ct. For rn >" l the streamwise derivatives of the mean-flow VB

are zero, in accordance with the boundary-layer approximation. Similarly, in (7) we drop

second- and hlgher-order derivatives with respect to ae of _p and ap. Performing harmonic

balance yields an infinite set of coupled partial differential equations of parabolic type in :r

of the form

M OOp dap ^
Lgp + Oa" + -_x Nvp = _Q[vr, Vp-r], (13)

r

where the operators L,M,N and Q contain derivatives with respect to y only. The sun>

marion on the r.h.s, of (3) is is truncated to some number (L,N,K) in the numerical

computations. Due to the symmetry in z we.only need to solve for modes with non-negative

wave numbers in t, .r., and z. Upstream traveling modes are not allowed.

A second, and closing, set of equations for the PSE is needed to define the values of "yp

as a funclion of x. These equations remove the ambiguity existing in (4) wherein both 9p

and Ap depend on x. In the present work we use an integral norm (although other choices

are possible)

{_°° .t 8¢Lp - "1

where 7¢ denotes the real part, and * denotes the complex conjugate. See references [10,11,12]

for more details.

We traltsfer the zero-slip wall boundary condition to y = 0 via a Taylor series expansion

about ,j = 0, and stop the expansion at terms linear in [HI since this quantity is assumed
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small, although including higher orders in ]H] can be clone in a straight forward fashion.

Performing harmonic balance yields the boundary conditions satisfied by Vp for each p,

A -G) [[w ]%(.r,0)- p + L V' -r Ar(*) • (15)

The initial conditions for the PSE are obtained by means of a local procedure that is

composed of a system of ordinary differential equations and, hence, is free from upstream

influence, as described in [10,11,12]. Briefly, the local procedure is derived by expanding

9p(X, y) in a two-term Taylor series about the x location of interest, and collecting terms

of order (9(1) and C9(A.r). To be consistent with the ordering of terms, the wavenumber

and frequency w is assumed greater than order O(R-1). Consequently, modes having zero

wavenumber and frequency, such as vortices and the mean-flow distortion, are initialized

differently, as described below.

The xPSE transition analysis tool-kit has been employed for the computations. Tile

partial differential equations, (IS), are transformed into algebraic form by use of a multi-

domain spectral collocation technique in y, and a finite difference discretization in x. Five

domains are used in Y, with limits at [0,4], [4,12], [12,24], [24,50], [50,100] and u and

v are approximated by 17 and 19 Chebychev polynomials, respectively, in each domain.

Asymptotic boundary conditions are imposed at y = I00. In particular, in the far-field the

velocity fields decay exponentially in y with rate _"is imposed, using _ = _1 or _2, which ever

has a smaller real part,

¢1 = 4(k3) 2- a_

Roy,(2 - 2 + Ro(ap - ilw) + (;2 .

During every streamwise step, the nonlinear algebraic system is solved iterative]y by

modifying tile values of ")'p until the normalization conditions (9) are satisfied to a pre-

determine level of accuracy.

A further element affecting accuracy is the presence of (11) in _rp. For small amounts of

separation [a_ - al, the difference in wavenumber is well captured by the streamwise change

of _,p. For larger amounts, however, the PSE results loose accuracy. A more detail study

of this issue, as well as the effect of step-size on accuracy, can be found in reference [14]. It

suffices here to say that a difference in [ce_ - a[/_ < 0.1, along with steps sizes A:r < 5, lead

to acceptably small errors. Increasing the differences above 10% leads to an underestimate

of the growth rates.



V. Results

Tile presentation of the results is divided into three sections. In the first one we look at the

effect of roughness height oil transition using the surface shown in Figure la. Then, to this

surface we add a spanwise periodic array of "ril)lets" aligned with the streamwise direction, as

shown in fig 1b, and show how their presence triggers transition. The initial conditions for the

steady modes in the riblet case need special treatment, and a discussion is presented prior to

the results. Afterwards, we investigate the effect of raising the acoustic level on the transition

location. Even though we only carry a few modes and frequencies in our calculations, our

results lie close to the experimental correlations between transition location and free-stream

turbulence levels. All quantities presented herein have been nondimensionalized with 5_ and

ugh.
To specify the problem, we need to select the number of acoustic modes present, and

their frequency. Arbitrarily, we choose the Dequency F = 56 and its subharmonic, F = 28.

The presence of the subharmonic is needed to generate the traveling wave which will undergo

parametric resonance with the fundamental mode at some point downstream. Given these

frequencies, we select the wavelength of the wall modes to maximize receptivity. We choose

the fundamental wavenumber a for the Fourier decomposition of the wall undulations to

be a = 0.0871, so that the wall mode with wavenumber 2o_ will closely match wavenumber

o_ = 0.172,3 at branch I for a TS wave of frequency F --- 56. The fundamental spanwise

wavenumber [) is set to the value of 0.15, so that fl _ 2_ and the associated K and H type

secondary instabilities are nearly maximally amplified [13].

While our selection of wavelengths for the wail modes is arbitrary, we note that within

the range of variations we are dealing with (i.e. 10 to 30 micrometers) most wing surfaces

will contain a large selection of undulations with different wavelengths, amongst which our

particular choices are likely to be present.

The spectrum in the numerical calculation is truncated to L = 2, N = 2, K = 2 in *, x,

and z, except for the riblet case, where K = 3 is used. The integration is started at /g = 300,

which is sufficiently upstream to include any significant resonance prior to branch I (/_ = 589

at F = 56), and marched downstream with a constant step size of Ax = 3.5. While the

triple Fourier sum allows for 27 distinct modes, many of these modes do not play an active

role in the transition process and can be excluded from the calculation. For example, the

modes having phase speeds of either 2c = 2c0/c_ or c/2 = co/2c_ remain at roughly constant

amplitude levels throughout the computation, and their presence does not alter the results

shown herein. Apparently, the phase speed difference prevents strong participation with the

interactions propagating at the speed c. Also, our results show that the interactions between

modes of equal phase speed, but different from c, do not result in rapid amplitude growth.



In our study we employ three different plate geometries, which we label "high", "low"

and "riblet". Tile coefficients in (1) are real and have the following values,

142(2,o)

W(,,,)

W(o,1)

W(o,2)

Table 1

high low riblet

2.0 x 10 -3 1.0 x 10 -a 1.0 x 10 -3

2.0 ×10 -a 1.0 xl0 -a 1.0 ><10-3

2.0 × 10 -3

0.0

1.0 x 10 -3

0.0

1.0 x 10 -3

5.0 X 10 -3

0.0 0.0 1.25 × 10 -3

The geometry between "high" and "low" differs only in the peak-to-peak variation of tile

undulations. Tile "riblet" geometry contains two additional modes which describe stream-

wise aligned undulations, similar to the streamwise "riblets" used in turbulence drag reduc-

tion, only that our "riblets" are not sharp peaked, and have a very small height.

V.1. Effect of roughness height

To study the effect of surface roughness height on transition we consider tile "high" and

"low" geometries. The acoustic modes have a u peak-to peak variation of 0.0010 Uo¢, (i.e.

¢41 : ¢42 = 0.0005 in equation 2) while tile peak-to-peak variation of the wall modes (Table 1)

differ amongst each other by at most a factor of 2, hence no bias exists towards one particular

mode. This scenario contrasts that of ribbon-induced transition where a two-dimensional

mode dominates in amplitude prior to the onset of secondary instability.

Figure 3 displays the amplitude evolution of modes in the "high" roughness case. The

transition process follows the well known subharmonic route. We focus our attention on two

modes:, the two-dimensionM mode (2,2,0), which develops into a TS wave, and the (1,1,1)

mode, which develops into tile subharmonic mode. Initially each mode is composed solely

of a forced traveling wave. As the modes propagate downstream the nonlocalized receptivity

process pumps energy into the eigenmodes. Consequently, the (2,2,0) and (1,1,1) modes are

of nearly the same amplitude and exhibit similar growth rates during their early evolution.

At R = 589, the (2,2,0) mode passes through branch I. The eigensolution component of the

mode undergoes exponential growth, while the forced traveling wave diminishes downstream.

The development of the subharmonic mode, (1,1,1), can be analyzed in two parts, the first

one at Iocations below, say R = 1050 (including the sharp dip in amplitude), and the second

one for locations above R = 1050. The first part is dominated by the process of receptivity,

while the second part is dominated by the parametric resonance with the (2,2,0) mode. The

9
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0-3
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10-5
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I
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I I I I 1 I 1 I

400 800 1200 1600 2000

R

Figure 3: Root mean square of maximum u velocity versus R for the "high" roughness case.

dip in amplitude near R = 1000 is caused by a change in phase of 180 degrees in the complex

velocity field v(1,1,1). This change is due to :r dependent changes in the coefficients of the

equations which govern the interaction between the forced mode and the eigenmode. At

higher levels of acoustic forcing the receptivity and parametric regions overlap, eliminating

this sharp dip in amplitude.

The (2,2,1) mode does not lead to fundamental (i.e. K-type) dynamics. The "porpoising"

in amplitude seen in Figure 3 persists even with a four-fold increase in the acoustic amplitude,

which increases by an equal amount the amplitude of the traveling modes, but only slightly

the amplitude of the steady modes. The reason for this lack of K-type resonance, thus,

cannot be explained simply in terms of a threshold amplitude of the (2,2,0) mode. Since K-

type resonance involves the triad interaction between the (2,2,0), (2,2,1) and (0,0,1) modes,

one may suspect an unfavorable phase relation in the triad to be quenching of the resonance.

A four-fold increase in wall mode amplitudes, on the other hand, increases the amplitude

of all modes, including the (0,0,1) mode, and the flow displays a mixed II-type and K-type

transition.

Additional insight into the energy transfer between traveling modes and eigenmodes, as

well as phase cancellation giving rive to the "porpoising" amplitudes, can be obtained from

the perturbation theory [5] wherein the forced traveling wave and the eigensolution are kept

distinct. In the PSE formulation one cannot easily separate the sohition into the sum of the

two components.

Lowering the amplitude of the wall undulations to the "low" level (see table i) results

in the dynamics shown in Figure 4. Between R = 980 and R = 1200 the subharmonic

10
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Figure 4: Root mean square of maxinmnl u velocity versus R for the "low" roughness case.

undergoes rapid growth as in fig 3, however the amplitudes of the (2,2,0) and (1,1,1) modes

remain below the threshold for self-sustained growth, causing these modes to decay' after

their respective branch II location at /_ = 1116 and R = 1340. The (0,0,2) mode undergoes

rapid growth past R = 1200 due to the direct forcing from the (1,1,1)-(1,1,1) interaction.

Further downstream, this mode persists, albeit slowly decaying, being a remnance of the

earlier parametric resonance. Similarly, the (0,0,1) mode grows under the forcing fi'om the

(2,2,0)-(2,2,1) interaction. Both the mean-flow-distortion (0,0,0) and this mode undergo

weak algebraic growth past R = 1400 (see section V.2.1), but, eventually, the flow returns

to its undisturbed state.

The results of the "high" and "low" roughness cases clearly display the sensitivity of

the transition process on small changes of wall roughness height or, equivalently, on small

variations of acoustic amplitude levels. This sensitivity highlights the difficulty of predicting

transition with a simple criteria such as e '_.

V.2. Effect of streamwise undulations

In the "high" roughness case, displayed in Figure 3, one can observe the birth of the

mode (1,1,0) at about R = 1170. This mode is of interest since as an eigenlnode it has

an unstable region that spans from R = 864 to R _ 2000. This mode is forced via the

(0,0,1)-(1,1,1) mode interaction, and since the wall Fourier mode W(04) directly forces the

mode (0,0,1) through the wall boundary conditions, we looked into what effect a periodic

array of streamwise "ribh'ts" would have on transition. We represent these "riblets" with

two Fourier modes with wavelength /3 and 2/5'. Conse¢tuently, our "ribh'ts" are more blunt

1!



and smaller than those used in turbulent drag reduction.

V.2.1. The initial condition

The generation of the initial conditions for the (0,0,1) and (0,0,2) modes at our starting

location, R = 300 posed a problem. Several runs with the PSE showed that the evolution

of this steady mode depends strongly on the initial conditions chosen. For some conditions,

algebraic growth ensued. The dependence of the solution on the initial conditions persists

far downstream, hence investigations are biased by the choice of initial conditions for the

steady modes, or, equivalently, on the birth mechanism of these modes. Thus, we developed

a particular, and reproducible, way of generating the initial conditions. Since large algebraic

growth can obscure the dynamics of receptivity, and since the numerical initial conditions

leading to such large growth may not be realizable in a real flow, we gauged the "correctness"

of our initial conditions by the amount of algebraic growth present.

We generate the initial conditions by extending the riblets to the leading edge in such

a way that a separation of variables approach is applicable with small error. The riblet is

extended linearly from its full height at the PSE starting location, x = x0, back to zero

height at the leading edge, x = 0,

2
X

.(.,z) = E JEW(o,.)] 0 < x _<xo

The wall forcing (15) involves the product of H with the derivative of the Blasius U compo-

nent of velocity, which decreases as z -1/2, therefore the forcing (15) increases ms the v @ over

0 < x < x0. Accordingly, in this x interval we introduce the following form for the (0,0,1)

velocity field,

u(x, y, z) = u(y e -'_

^ 1 /-7- iO_

=

,

with a similar form for the (0,0,2) field. The boundary conditions reduce to an x independent

forlll,

fi(0) = -W0,,f"(0) , ,3(0) = 0, tb(0) = 0

where f is the self-similar stream function of Blasius. The continuity and inomentum equa-

tions contain coefficients that depend on x, so the separation of variables technique is not

12



strictly valid, ttowever, the variation with .r is slowenoughto be negligible. For example,

cxpanding x = x0 + Ax, the continuity equation reduces to,

d_, " Ax

fz + 2_9 + 2i/3_b - ^Xo Xo + Ax u

Tile right-hand-side depends o11 x but is O(Ro l) near x = x0. We set the right-hand-side

to zero and solve the equations at x = x0 = 300. The downstream evolution of the (0,0,1)

10-1

10-2

x

__10 -3

10-4

10-5

............... (o)

I I I I I I I I I I

400 800 1200 1600 2000

R

Figure 5: Amplitude evolution of the (0,0,1)mode, (a), and of the (0,0,0)mode, (b). Dashed

lines show cases of algebraic growth.

mode is shown as the solid line associated with label "(a)" in Figure 5. Tile amplitude

remains nearly constant over the domain of integration, showing only a weak transient near

R0 = 300. Negligible algebraic growth is present, and, in this respect, our initial conditions

successfully generate a quasi-uniform downstream solution. In contrast, tile dashed line

associated with label "(a)" corresponds to a (0,0,1) ,node generated via the local procedure,

and displays the linear growth (when plotted in x vs. A) characteristic of algebraic growth

[15,161.

The mean-flow-distortion, i.e. mode (0,0,0), is started from zero, and also displays al-

gebraic growth. The solid line associated with label "(b)" shows the development of the

mean-flow-distortion in the presence of the (0,0,1) mode. The growth exhibited is, however,

due mostly to algebraic growth. This fact can be deduced by overlaying on the Figure tile

evolution of the mean-flow-distortion that has had the (0,0,1) forcing removed after a few

marching steps (shown as the dashed line).
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V.2.2. Effect of riblets on transition

The addition of riblets to the "low" roughnesscasecausesthe flow to reach the later

stagesof transition. The amplitude evolution of selectedmodesis shownin Figure 6. In

comparisonwith Figure 5, the (0,0,1) modehasa much higher alnplitude, and the (1,i,1)-
(0,0,1) forcing generatesthe (1,1,0)modeat about R = 1100. While initially driven mainly

by the forcing, the eigenmode component of (1,1,0) undergoes exponential growth (Branch I

is at R = 864) and becomes the dominant component past R = 1450. Since at this frequency

the eigenmode's total amplification AII/At is 7208, the (1,1,0) mode grows sufficiently to

produce a significant back-forcing on the (1,1,1) mode via the (1,1,0)-(0,0,1) interaction.

Past R = 1650 the (1,1,0), (0,0,1) and (1,1,1) ,nodes behave like in the vortex-wave

interaction study presented in [10], wherein these modes eventually lock into a K-type para-

metric resonance. A similar triad resonance develops between the (1,1,0), (0,0,2), and (1,1,2)

modes. The flow at R = 1970 reaches a strongly nonlinear stage which precedes the onset

of turbulence.

We like to refer to the evolution shown in Figure 6 as the "lateral", since the first strong

interaction of H-type sets the stage for the following K-type. This progression from higher

to lower frequencies follows the slope of the branch I of the neutral stability curve as the

Reynolds number increases, and thns, maintains the dominant modes near, or inside, the

eigenmode's region of instability.
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10 -3
_E

10-4

10-5

B._ 2,2,0 o .... 2,2,1 + - - 0,0,1
• ,---- 1,1,1 e----- 1,1,0 . .... 0,0,2

: : i ! .'
.{ .... :.../! i.'" : :

'_-.:.._ : : :...--_:s.' : _, i / is- ;I

:: :: ....

_ ___"-'" .::........
i i, i /i i "--r i

400 800 1200 1600 2000

R

Figure 6: Root mean square of maximum u velocity versus /_ for the "Riblet" roughness
case.

Figure 7 gives a visual synopsis of the "riblet" results. Shown as a solid line and a dashed

line, respectively, are the neutral stability curves of two-dimensional and three-dimensional
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disturbancesgiven by' the linearized stability equations. Superimposedare four constant

frequencybandsthat representfour particular modespresentin our calculation. The bands

display, roughly, the location and extent of the receptivity (light gray), linear stage (white)

and nonlinear stage (dark gray) in our computational domain. The upper of the two bands

at F = 56 corresponds to the (2,2,0) mode, and the one just below it corresponds to the

(2,2,1) mode. Similarly, the two bands at F = 28 correspond to the (1,1,0) mode (above)

and the (1,1,1) mode (below). The band at F = 0 represents the (0,0,2) mode. For this

mode the receptivity region denotes the direct forcing by the I/V(0,2) wall mode.

F=250 -

200 -

150 -

100 -

5O

0 500 1000 1500

Figure 7: Visual synopsis of the dynamics shown in figure 6.

mode represented by each strip.

R=2000

Integer triplets denote the

V.3 Effect of acoustic levels on Rtrans

We close this section with the results of our investigation into tile effect of the acoustic

forcing level on the transition Reynolds number. While keeping the wall geometry fixed

("high" case), we increased the acoustic amplitude levels of both frequency components

F = 56 and F = 28 from .At = 0.0005 used in our studies above, to Mt = 0.002, 0.01, and

0.02. Tile corresponding r.m.s, amplitude levels are v/2 times larger. Since our simulations

do not reach into the turbulent flow regime, we arbitrarily defined the transition Reynolds
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nuniber as the location where the subharmonic mode reaches 6% amplitude. At this point

the flow is engaged in tile strong nonlinear interaction characteristic of spike stage, and the

turbulent regime usually follows within a couple of streamwise wavelengths, 2rr/a.. We
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Figure 8: Transition /i}x versus fiee-stream turbulence level, Tu. Dark bands represent

computed results.

compare our restllts with the summary of experimental data presented by Arnal in [1]. The

experimentally measured (free-stream) turbulence level was based on the r.m.s, fluctuation

of all three velocity components, and even though this quantity consisted of a mixture of both

sound and vorticity, our data matches qualitatively with the experimental ones, as shown in

Figure 8 (note that R 2 = R_). The higher numbers of R:ct_ experimentally measured at the

quiet limit suggest that a wall smoother than the one modeled here was used in the wind-

tunnel tests, while the lower Rzt_ measured at higher free-stream turbulence l'evels suggest

that other mechanisms in addition to those considered herein are at work. Considering the

simplicity of our model, the "ball-park" agreement of results is surprising.
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VI. Conclusion

Given the description of the acoustic field spectrum and of the wavy wall geometry,

we have followed tile boundary layer response through the regions of receptivity, linear

growth, and nonlinear mode interaction. The "bareness" of tile input data needed for the

numerical computation, namely the W(,_,k) and .,4_ coefficients in equations (1) and (2),

along with tile efficiency inherent to tlle marching procedure, facilitates the exploration

into the effects of receptivity parameters on transition. Here we have varied (slightly) the

amplitude of the surface undulations to show two different downstream evolutions, one of

which reaches spike stage, the other one returning to the Blasius profile. Adding streamwise

riblets to the later case brings about spike stage through a "lateral" mechanism involving

the transfer of resonance from higher frequencies to lower ones. Our results on the effect of

acoustic amplitude level on the transition location compare qualitatively with wind tunnel

measurements involving free-stream turbulence, despite the simplicity of our model. Both

the acoustic level used (0.007% Uo_, r.m.s) and amplitudes of the surface waviness (30tLm,

or less) make our investigation relevant to flight conditions.

References

[1] D. Arnal, "Boundary Layer Transition: Prediction, Application to Drag Reduction,"

AGARD Report 786 (Skin friction drag reduction), VKI, Brussells, 1992.

[2] M.E. Goldstein and L.S. Hultgren, Ann. Rev. Fluid Mech., 21 (1989) pp. 137-166.

[a] s.J. K rschen,A aA Paper 89-i109 (1989).

[4] N. Cin, H.L. Reed and W.S. Saric, Bull. Am. Phys. Soc., 35 (1990) p. 2260.

[5] J.D. Crouch, "Non-localized receptivity of boundary layers," J. Fluid Mech., 244, pp.

567-581, (1992).

[6] J.D. Crouch, Bull. Am. Phys. Soc., 35 (1990) p. 2262.

[7] J.D. Crouch, Boundary Layer Stability and Transition to Turbulence, ASME FED-Vol.

114 (1991) pp. 63-68.

[8] J.D. Crouch and F.P. Bertolotti, AIAA Paper 92-0740 (1992).

[9] Th. Herbert and F.P. Bertolotti, Bull. Am. Phys. Soc., 32 (1987) p. 2079.

17



[10]F.P. Bertolotti, Linear aT_d NonliT_ear Stability of BouT_dary Layers with Strcamwisc

Varyin 9 Properties, PhD Thesis, The Ohio State University (1991).

[11] Th. IIerbert, AIAA Paper 91-0737 (1991).

[12] F.P. Bertolotti, Th. Herbert and P.R. St)alart, "Linear and nonlinear stability of the

Blasius boundary layer," J. Fluid Mech., 242, pp. 411-474, (1992).

[13] Th. tterbert, "Secondary instability of boundary layers," Ann. Rev. Fluid Mech., 20

(1988) pp. 487-526.

[14] F.P. Bertolotti and J.D. Crouch, "Simulation of boundary-layer transition: receptivity

to spike stage," Proc. First guro. Comp. Fluid Dynam. Conference, Brussels, Belgium,

Sept. 1992, pp. 183-190. Elsevier Science Publishers B.V.

[15] P.J. Schmid and D.S. Henningson , "A new mechanism for rapid transition involving a

pair of oblique waves," Phys. Fluids A., to appear, (1992).

[16] S.C. Reddy and D.S. Henningson, "Energy growth in viscous channel flows," J. Fluid

Mech., submitted, (1992).

18









Form Approved

REPORT DOCUMENTATION PAGE OMB NO 0704-0188

ooo,,;._,og0or_eofo_.,.,°,,e_.... for.... ,,o..... _..... ,...... g...... o_r_._ .......,_o,o_the,,_e,_rr_,_,_;_,_Z_ _r_
cotie_=on of =nformat_on ,nclud=ng suggesbons fcr reducing th_s burden _C Washington Headauar_er_ _erv=ces. ut echo a e o o t o. uDe u _ .
Dav=s H=ghway. Suite !204. Arhngton. V_ 22202-4302. and to the OffiCe O_ Managemeot and Budge_ Pa_serwcrk F_edu_clon Pro ed (0704-0 lS8}, Washington, DC 2050]

1. AGENCY USE ONLY (Leave blank) i2. REPORT DATE

December 1992

4. TITLE AND SUBTITLE

SIMULATION OF BOUNDARY-LAYER TRANSITION:

TO SPIKE STAGE

6. AUTHOR(S)

Fabio P. Bertolotti

Jeffrey D. Crouch

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME{S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Contractor Report

RECEPTIVITY

5. FUNDING NUMBERS

C NASI-18605

C NASI-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 92-72

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-191413

ICASE Report No. 92-72

11. SUPPLEMENTARY NOTES

Langley Technical Monitor:

Final Report

Michael F. Card

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 34

To be submitted to Physics

of Fluids

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum200word$)

The transition to turbulence in a boundary layer over a flat plate with mild surface

undulations is simulated using the parabollzed stability equations (PSE). The sim-

ulations incorporate the receptivity; the linear growth, and the nonlinear inter-

actions leading to breakdown. The nonlocallzed receptivity couples acoustic pertur-

bations in the free stream with disturbances generated by the surface undulations to

activate a resonance with the natural elgenmodes of the boundary layer. The non-

linear simulations display the influence of the receptivity inputs on transition.

Results show the transition location to be highly sensitive to the amplitudes of

both the acoustic disturbance and the surface waviness.

14. SUBJECT TERMS

receptivity; laminar to turbulence rransltlon; boundary layer

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

2O
16. PRICE CODE

A03

19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescr=be<l by AN_i Std Z39-I8
29B-102

NASA-Langley, 1993


